Engine Systems/Airframe Systems Noise Report

Bill Willshire

2nd ECoA Workshop May 21, 1998

Breakout Process(Workshop Process)

Enabling Technology

Engine Systems Noise Reduction Advanced Concepts

Single Core - Multiple Fans

Active/Aspirating Nacelle

Distributed Exhaust

Engine Systems

Advanced Concept - Dual Fan

Enabling Technologies:

- Advanced, light-weight gearbox
- Thrust reversing
- Variable pitch
- Nacelle drag reduction
- Propulsion Airframe Integration
- Operability

Engine Systems - Summary Chart

Statorless fan

Advanced Concepts

Multistage Fans
Variable Cycle Engines
Dual Fan
Mini-Nozzles
Linear Accelerator
Counter-rotating Fan
Adaptive Engine/Nacelle
Advanced Liners
UHB Ducted Propeller
Modular Liners

Micro-engines

Enabling Technology

Core noise reduction **Active source control** Seeded exhaust Rotor/stator noise reduction **Jet noise reduction Composite/Smart materials** Advanced gear boxes **Propulsion airframe integration** Flow management/Micro blowing **MEMS** High temperature materials **Computational Aeroacoustics Nozzle performance** Low speed fans

Engine Systems Noise Level II Roadmap

- Active/Adaptive Nacelles
- Distributed exhaust
- Flow Management

-16 dB Engine systems TRL 6

Revolutionary A/C System Development

Revolutionary concept Downselect

- Rotor/Stator Interaction
- Low Speed Fans
- Core Jet

AST Hand-off

-12 dB Engine system

PAI

TRL 6

Revolutionary A/C Component Develop

- 8 dB Engine **System TRL 6 Nacelle Liners**
- **Fan Noise**
- **Jet Noise**

AST Noise Reduction Program

Fundamental Technologies Programs

- Numerical Techniques
 Actuators
 Measurements(PIV,DGV, arrays, ...)
 Turbulence Control

FY97

FY02

FY07

FY12

FY17

NAR

2X Reduction EIS

4X Reduction EIS

Airframe Systems Noise Reduction Advanced Concepts

Variable Camber Wing

Adaptive Surface Wing

Blended Wing Body

Airframe System Advanced Concept - Adaptive Wing Enabling Technologies:

- Smart materials/structures
- Actuation
- Digital control systems
- Dynamic load alleviation
- Computational Aeroacoustics (CAA)
- Propulsion airframe integration (PAI)
- Safety

Airframe System - Summary Chart

Advanced Concepts

Variable Camber Adaptive Wing Blended Wing Body Gearless Design Strut-Braced Wing Box Wing Dual Fuselage Advanced High-Lift Buried Engine Far-field ANC Lifting Nacelle

Enabling Technology

Turbulence control (surface treat.) Smart materials/structures CAA/CFD (inverse design) **Propulsion airframe integration Composites** Flow control **Active Noise Control (ANC) Trailing edge noise reduction Engine installation for high-lift Inflow distortion management Laminar flow** Micro blowing **MEMS Aero performance**

Airframe Systems Noise Level II Roadmap Environmental Program - 12 dB Airframe Eng-A/F Integration/Optimization **Reduction TRL 6** Micro Blowing MEMS CAA Inverse Design Tools Revolutionary A/C Syste n **Development Revolutionary concept Downselect** - 9 dB Airframe Flow Management **Reduction TRL 6** Structural Acoustics Materials Revolutionary A/C Component Develop **AST Hand-off** - 4 dB Airframe **Reduction TRL 6** Empirical **Models** AST Noise Reduction Program Gear Flap/Slat Fundamental Technologies Programs Numerical Methods Turbulence Control Active Structure Active Flow Control

Noise/Emissions Coordination

- Timing of advanced concepts
- Combustors
- Operations

•

Concluding Remarks

- General agreement on program
 - Need
 - Framework
 - Areas of concentration
- Good beginning on Roadmap content